TCS1-IN: Sokoban

1538 >

Author : Christophe Garion and Fabrice Frances Intitut Supérieur de PAgronautique et de 'Espace
Audience : SUPAERO 1A S u P A E R 0
Date : February 14, 2023

1 Objectives

The objectives of this project are the following;:

e write an implementation of the Sokoban classic puzzle game. This implementation will allow to load a map
from a file, to replay a game and to interactively play Sokoban

e write a solver for the Sokoban game

e use an efficient data structure to accelerate the solver

Each objective is presented in the following.

2 A Sokoban game in C

Sokoban (s6ko-ban, “warehouse keeper” in Japanese) is a classic puzzle game from the eighties. The player pushes
boxes around a warehouse trying to get them to a set of storage locations. In figure 1, the player has to place the
boxes on the red dots (the darker box is already on a red dot). Notice that:

e the player cannot go outside the warehouse
e the player can only push boxes

e the player can only push one box at a time

.
A
®

i

N

.
A
e
A
®

Figure 1: A Sokoban game (credits: Carloseow at English Wikipedia, CC-BY-NC-SA 3.0 license)

The first part of the project is to implement Sokoban in C. Your implementation will be minimalistic and use the
console (you will print the map on the console and the user will enter moves with the keyboard). You will also have
to implement a map loader and a “replayer” in order to verify your implementation.

See section 5 for more details on how to implement Sokoban game.

OO Revision ec9793c, Tue Feb 14 12:36:18 2023 +0100, Christophe Garion. 1/19

https://en.wikipedia.org/wiki/Sokoban
https://en.wikipedia.org/wiki/Sokoban

TCS1-IN Sokoban SUPAERO 1A

3 A Sokoban solver

The next part of the project is to implement a solver for Sokoban in C. The idea is to explore the possible configurations
starting from an initial one until a winning configuration has been found or no new configuration can be found.
Given a configuration, we will first explore the four configurations generated by the possible moves (going north,
south, east or west) before exploring further configurations. This is clearly a breadth-first search algorithm, as seen
in session P5.

An example is presented on figure 2 (maps are represented by characters, see 5.1). Starting from the configuration at
the root of the tree, we will first generate and check configurations at first level. Configurations generated from the N
first move are then explored. The next explored configurations would be the ones generated from the S configuration,
then the ones generated from the W configuration etc.

HHH
#
#
t @ . #
#
$
#
HEH S

N s// w\\ E

HHH B HHH S HUHHHHH B

#

@ # # # # # #

. # #a # # Q.

a # # # #

$ # # $ # # $ # # $

#

HEHBH AR HHHHH R HUHHH HEHBH AR

N S W

HEHH S HEH S BB HH AR HEHH R
a # # # # # #
#a # @
@ . # # # #
#
$ # # $ # # $ # # $
#
HHH B BB HHH S

Figure 2: Exploring some configurations

As seen in session P5 on trees, we will not explicitely build the tree presented in figure 2 but we will use a queue data
structure to store the configurations to explore!. At any time, the queue contains part of the configurations that are
at a distance of d moves from the initial configuration, followed by part of the configurations that are at a distance
d + 1 moves. A configuration contains a map, the action that produced it and refers to the previous configuration.
Algorithm 3.1 presents the solver algorithm and some comments on the algorithm are presented in the following:

e the queue search_queue contains configurations and is used to store the next configurations to explore. As it
is a queue, the oldest configurations will be explored first.

o the queue dequeued_queue contains the configurations already explored in order to free memory more easily
at the end of the execution of the solver.

1A queue is similar to a list but insertion and extraction of elements are done on the same “side” of the queue.

©©OSO 2/19

https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

TCS1-IN Sokoban SUPAERO 1A

e thelist explored_list contains map already explored. It is used to verify if a newly produced map has already
been explored. It is also used to free map memory, as it contains all the created maps.

o the main loop works as follows:

the queue search_queue is dequeued: its oldest element is removed from it. The corresponding map
current_map is extracted.

if current_map is a winning map, exit the while loop

a loop explore the four possible maps (noted new_map) that can be built from current_map

if new_map has already been explored (i.e. itis in explored_list), then continue the for loop for the next
map to build else add new_map in explored_list (it has been explored) and in search_queue (it must
be later examined)

e when exiting the while loop

— either there is a winning map. You have then to build the corresponding plan

— either there is no plan to win the game starting from the initial map

o finally, free all allocated memory

More details about the implementation of the algorithm and the corresponding data structures are given in sec-
tion 5.6.

4 Optimizing the solver

The bottleneck in algorithm 3.1 is the search of the current map in the list of already explored maps. It is of course
in O(n) with n the size of the list. So, can we do better?

The answer is of course YES! You will see in sessions P5, M10 and M11 a data structure called binary search tree
(BST). A BST allows to insert or retrieve an element in logarithmic time, so if we can use a BST instead of the list, it
will be a huge improvement of the time complexity of our algorithm.

A BST needs comparable values to work (in session M7, we will implement a BST containing int values). As we
want to manipulate maps in the BST, we need to be able to compare maps (see section 5.7 for more details).

You may wonder if this improvement is real. Table 1 gives execution times of both version of solver compiled with
GCC option -03 on my machine (which is quite the same as the ones available at SI). BST is clearly a winner...
Conclusion: choosing a good data structure improves a lot your algorithm!

5 Implementation details

5.1 Game map
The game map elements will be represented by char values:
e '@': the player on an empty cell
e '+': the player on a storage destination
e '$': abox on an empty cell
e 'x':aboxon a storage destination
e '.':astorage destination without player nor box
e ' ': empty space
o '#':awall
The game map will be implemented with a structure containing:
e the height and the width of the map

o the player position

©©OSO 3/19

https://en.wikipedia.org/wiki/Binary_search_tree

TCS1-IN Sokoban

SUPAERO 1A

Algorithm 3.1: Sokoban solver algorithm

Input: an initial map initial_map
Output: a plan to solve initial_map if initial_map is solvable

1 create new queue of configurations search_queue;
2 create new queue of configurations dequeued_queue;
3 create new list of maps explored_list

4 enqueue(search_queue, initial_map) ;
5 add initial_map in explored__list;

6 while search_queue is not empty do
7 current_cell := dequeue(search_queue) ;
8 current_map := get map from current_cell;

9 enqueue(dequeued_queue, current_cell);

10 if current_map is a winning map then
1 | exitwhile loop ;
12 end

13 foreach dir € {NORTH, SOUTH, EAST, WEST} do

14 new_map := compute new map from current_map and dir;

15 if new_map is in explored__list then

16 free memory allocated for new_map;
17 continue for loop;

18 end

19 add new_map in explored__list;

20 add new cell in search__queue using new_map, current_cell and dir;

21 end
22 end

23 if current_map is a winning map then

24 | build winning plan ;

25 else

2 | prepare a response saying that there is no plan ;
27 end

28 free memory allocated for the plans stored in explored_list;
29 free memory allocated for explored_list;

30 free memory allocated for search__queue and its cells ;

31 free memory allocated for dequeued_queue and its cells ;

©OSOO

4/19

TCS1-IN Sokoban SUPAERO 1A

file win planlength # of explored nodes time for list (s) time for BST (s)
./data/soko_dumber.in 4 2 5 0.000005 0.000005
./data/soko_dumb.in v 7 111 0.000086 0.000062
./data/soko_dumb_imp.in X 1,805 0.014606 0.001895
./data/soko81.in v 31 31,906 4.647807 0.043387
./data/s0k099.in v 36 147,508 218.615019 0.291131
./data/sokol.in v 184 193,895 318.875331 0.63285

Table 1: Comparison of solver execution times with linked list or BST

e a pointer to a char representing the elements of the map

The pointer to char in the structure will point on a dynamically allocated memory region that can be assimilated to an
array of char. This region will contain the width x height char values representing the map?. To access the map
element at line i and column j, you should access the element in the array at index i * width + j where width is
the width of the map. You should write access and modification functions for the map in order to ease the readability
of your code.

= Do not hesitate to use the #define directive of the preprocessor to define constants to improve
= the readibility of your code. For instance

#tdefine BOY_ON '+

defines a symbol BOY_ON that will be replaced by ' +'
not add a ; at the end of the #define line!

in your program by the preprocessor. Do

5.2 The map loader

The map loader reads a text file containing the map description and returns a dynamically allocated structure rep-
resenting the map (cf. section 5.1). You will find in the data subdirectory of your repository several file examples.
For instance, soko_dumb. in (a simple map that can be used for testing purposes) is the following:

10 8
HugHHtHH

$

BT H H H HE X
BT o H H HF X

HedudHatHn

e the first line contains the width and the height of the map separated by a space

o the other lines contains the map with the convention described in section 5.1

Look at appendix E to understand how to read data from a file ("%s" is the format string used in scanf to read a
string). The app-ex-loader. c file contains a example program that reads a file given as input on the command line,
gets the dimensions of the map and print them and print each line of the map. You can use it to write your load
function.

You must provide a test for your loader in the test-loader.c file. This program should:

e read a file using main argv argument (see appendix D to understand to do pass arguments to main)
e build the corresponding structure
e print the structure using a printing function defined in sokoban.c

To test your implementation, simply try the previous program with different examples and verify that the output on
the console is the same as the content of the file.

2The 2D map will therefore be “flattened” in a 1D array

©©OSO 5/19

TCS1-IN Sokoban SUPAERO 1A

5.3 Moving the player

When writing the function that moves the player in a given direction, do not forget of course to respect the rules of
the game (cannot push several boxes, cannot go through walls etc). Moreover, when called on a pointer to a current
map p_map, the function should:

e return p_map if the movement is not possible (player against a wall etc)

e return a new dynamically allocated map if the movement is possible (i.e. you should not change the original

map)

Table 2 gives you test instances for this function: execute your move function on the map contained in the original
file with the provided movement and compare the result with the map contained in the provided result file. These
tests must be implemented in a test-move.c file in which all comparisons are checked with the assert function
(see appendix A).

original file movement result file

simple player movements soko_move_1.1in soko_move_1_N.in
soko_move_1.in soko_move_1_S.in
soko_move_1.in soko_move_1_E.in
soko_move_1.in soko_move_1 W.in

player movement on dest. soko_move_2.1in soko_move_2 _N.in
soko_move_2.in soko_move_2_S.in
soko_move_2.in soko_move_2 E.in
soko_move_2.in soko_move_2 W.in

move box to east soko_move_3_1.in soko_move_3_1 E.in
soko_move_3_2.in soko_move_3_2 E.in
soko_move_3_3.in soko_move_3_3 _E.in
soko_move_3_4.in soko_move_3_4 E.in
move box to west soko_move_4_1.in soko_move_4_1 W.in
soko_move_4_2.in soko_move_4_2 W.in
soko_move_4_3.in soko_move_4_3 W.in
soko_move_4 4.in soko_move_4 4 W.in
move box to north soko_move_5_1.in soko_move_5_1_N.in
soko_move_5_2.in soko_move_5_2 N.in
soko_move_5_3.in soko_move_5 3 N.in
soko_move_5_4.in soko_move_5 4 N.in
move box to south soko_move_6_1.in soko_move_6_1_S.in
soko_move_6_2.in soko_move_6_2_S.in
soko_move_6_3.in soko_move_6_3_S.in
soko_move_6_4.in soko_move_6_4_S.in

soko_move_W_E.in
soko_move_W_W.in
soko_move_W_N.in
soko_move_W_S.in

does nothing soko_move_W_E.in
soko_move_W_W.in
soko_move_W_N.in
soko_move_W_S.in

NZ=mMmumuzazs=s=mMunnzs=s=mMouououunzzZzzZzZ IssssmMmMmMmMmMfEEMm0NI|I=mMmnz==

soko_move_B_W_E.in soko_move_B_W_E.in
soko_move_B_W_W.in soko_move_B_W_W.in
soko_move_B_W_N.in soko_move_B_W_N.in
soko_move B W_S.in soko_move B W_S.in
soko_move_B_B_E.in soko_move_B_B_E.in
soko_move_B_B_W.in soko_move_B_B_W.in
soko_move_B_B_N.in soko_move_B_B_N.in
soko_move_B_B_S.in soko_move_B_B_S.in

Table 2: Unit tests for move function

©©OSO 6/19

TCS1-IN Sokoban SUPAERO 1A

5.4 Replay

In order to verify your implementation and the plan returned by the solver, you have to implement a replay function
in sokoban. c that takes as arguments a map, the length of the plan and a string representing the movements in the
plan. For instance, when called with 7 and "NEWSNNEE", the replayer should execute the following actions: go north,
go east, go west, go south, go north two times, go east (notice that the string is partially “executed”).

Beware, maps generated during the execution of replay should be freed at the end of its execution, except of course
the last one that is returned.

Table 3 gives you test instances for this function: execute your replay function on the map contained in the original
file with the provided plan and compare the result with the map contained in the provided result file. These tests
must be implemented in a test-replay.c file in which all comparisons are checked with the assert function (see
lab M5). The big plan for soko1l.in is given in the sokol-plan.txt file.

original file plan length plan result file
soko_dumb.in 3 "SSSEENN" soko_dumb_1.in
soko_dumb.in 5 "SSSEENN" soko_dumb_2.1in
soko_dumb.in 7 "SSSEENN" soko_dumb_win.in
soko_dumb.in 7 "ESEESSWNN" soko_dumb_3.in
soko_dumb.in 9 "ESEESSWNN" soko_dumb_win.in
sokol.in 100 big plan sokol_1.in
sokol.in 150 big plan sokol_2.in
sokol.in 184 big plan sokol_win.in

Table 3: Unit tests for replay function

Finally, write a program in a replay. c file that allows to replay a game from the command line. For instance:
./replay data/sokol.in 7 "NNNEEESSS"

should execute the 7 first movements of the "NNNEEESSS" plan starting from the map contained in data/sokol.in
and print the final map.

= The atoi function of the stdlib C library allows to convert a string to an int. Therefore,
= =3 atoi("76") returns the int value 76. It will be useful in the replay program, as all elements
in the argv parameter of main are strings.

5.5 Interactive player

The interactive player program must be contained in the play.c file. When launching the program, you must give
the file containing the initial map on the command line. The program then wait for the user to give a command by
typing a key for the player direction (for instance n, s, e or w or the arrow keys). If the user enters q, the program
exits.

The GUI you will have to develop will use the SDL2 library and functions declared and documented in the gui.h
file. A complete example of use is given in the app-ex-gui. c file, you can build the corresponding executable with
make app-ex-gui and execute it with ./app-ex-gui.

When using SDL2, you will have memory leaks (please complain to SDL2 developers). Do not
use Valgrind to test memory leaks with your play program.

5.6 Sokoban solver

In this section, we will give some implementation details about the Sokoban solver, particularly the data structures
needed to implement the solver.

©©OSO 7/19

TCS1-IN Sokoban SUPAERO 1A

5.6.1 List of already explored maps

A linked list will be used to store the already explored maps during the execution of the solver. You can simply reuse
your implementation of a linked list done during session M9, simply replace the int value contained in cells by a
pointer to a map.

Your specification and implementation of the linked list should be contained in the linked_1list_map.h and
linked_list_map.c files. You should provide tests for your list in the test_linked_list_map.c file. For instance,
add some maps in the list and verify that you can check if the list contains them or not.

5.6.2 Queue

There are two queues used in the solver. Remember that a queue is a linear data structure with two operations:
enqueue, adding an element at the tail of the queue, and dequeue, removing the element at the head of the queue
(hence the oldest element of the queue).

First, let us precise what should contain the cells of the queue (you may choose another representation if you prefer):

e a pointer to map
e a pointer to the next cell in the queue

e a pointer to the “mother” cell of the considered cell, i.e. the cell containing the map that generated the map
contained in the current cell. This will be useful in order to build the plan

the action that generated the considered cell (useful to build the plan)

the depth of the cell in the search tree, which should be 14 the depth of the mother of the cell. This will be also
useful to build the plan

Second, you may use a simple linked list to implement a queue, inserting all elements at the beginning of the list and
dequeuing the last element, but this implementation will not be efficient as you have to traverse the whole list to find
the last element of the list (hence a linear complexity).

A simple solution to obtain a queue with a complexity in O(1) for both enqueue and dequeue operations is to use
two pointers to cells in the queue: one for the first cell in the queue, and another one for the last cell in the queue.
For instance, let us consider the following queue (only the pointer to the next cell is represented in the cells, in
particular pointer to the mother cell is missing):

first last

p_queue

(1]

After “enqueueing” cell c10 in the queue, the queue will be:

first last

p_queue —

o8 lep——{ 9o}

When “dequeueing” the queue, cell c1 is returned and the queue is:

first last
p_queue u!

©©@OSO 8/19

TCS1-IN Sokoban SUPAERO 1A

Of course, you have to pay attention to boundary corners cases: inserting an element in an empty queue, dequeuing
a queue with only one element etc.

Your specification and implementation of the queue should be contained in the queue_map . h and queue_map. c files.
You should provide tests for your queue in the test_queue_map. c file. For instance, enqueue some maps and verify
that they are dequeued in the correct order.

5.6.3 Computing plan

In order to build the plan when finding a winning map and managing the case when there is no winning plan, you
should define a structure stats containing:

e aboolean stating that there is a winning plan or not
e the corresponding plan (i.e. a string and its length) if it exists

e possibly other values like the number of explored nodes, the time elapsed to solve the game etc.

To build the plan, if you have a cell containing the winning map, you know that the length of the string needed to
contain the plan is the depth of the node + 1 (to correctly add the character '\@' at the end of the string). You can
then use the mother cell relation to “go up” the explored nodes and write the plan.

5.6.4 Freeing memory

When freeing memory, do not free memory allocated for the plan in the cells. All generated plans should be contained
in the linked_list_map structure, therefore you should first deallocate memory allocated for cells in the queues,
then deallocate maps in explored list or BST and then the cells in explored list or BST.

5.6.5 Testing your solver

The tests-solver.csv file in the data directory contains some plans for different initial maps (all of them are also
in your data directory):

e there is only one map that has no solutions (soko_dumb_imp.in)

e solving time is in seconds and have been mesured on my machine

You should write a program in a test-solver.c file in order to verify that you obtain the same results (at least for
“easy” games). Beware, some plans are really difficult to find!

T When compiling your programs, use the -03 option in GCC: it aggressively optimize the compiled
= code. For this project, I personally have a code that is 4 times faster on my machine with this
option!

5.7 Implementing the BST

To implement the BST you may use your own version of BST implemented in lab session M7. The BST will not
contain int values, but maps. To compare maps, you may use the strncmp functions of the string.h library.
strncmp(sl, s2, size) compares the size first characters of s1 and s2 and returns:

e a strictly negative number if s1 < s2

e a strictly positive number if s1 > s2

e 0 otherwise

©©OSO 9/19

TCS1-IN Sokoban SUPAERO 1A

5.8 Development plan
You may apply the following development plan:

1. sokoban.h and sokoban.c: define necessary structures and the print_map function.

Notice that you may test your print function by defining a map structure directly in a program (i.e. without
loading a file).

2. loader.h, loader.c and test-loader.c: define the loader and test it on several examples.

3. sokoban.h, sokoban.c and test-move.c: define a function to move the player in a given direction.

You may test this function in a program by loading a map, executing the “move” function and printing the
resulting map before writing the complete tests defined in section 5.3.

4. sokoban.h, sokoban.c, test-replay.c: define a function to replay a game and test it with the given examples.
5. replay.c: program to replay a game from the command line.

6. play.c: define an interactive player for Sokoban (your game implementation should now be correct if you have
passed the tests for move and replay).

7. linked_list_map.h, linked_list_map.c, test-linked-1list-map.c: define the linked list needed to store
maps and test it.

8. queue_map.h, queue_map.c, test-queue-map.c: define the queue containing maps and test it.
9. solver.h, solver.c, test-solver.c: implement and test the solver.
10. solve.c: program to solve a Sokoban game given as an argument of the command line.

11. bst_map.h, bst_map.c, test-bst-map.c: define the BST containing maps and test it. Define also a new solve

program using the BST.
Do not try to implement several functionalities at once, it will not work! Implement and test your
code incrementally.

See section 8 to see how you will be graded.

Notice that:

e you will have all notions to implement the loader, the interactive player and the replayer after lab session M8
(02/17/2023). Of course, you may begin before M8!

o you will have all notions to implement the linked list and the queue after session M9 (03/03/2023).
o you will have all notions to implement the solver after session P5 (03/06/2023).

o you will have all notions to implement the BST after session M10 (03/10/2023).

5.9 Summary of files to produce

6 Acknowledgements

This project is inspired from an project done during the “Introduction to Functional Programming in OCaml” online
lecture by R. di Cosmo, Y. Regis-Gianas and R. Treinen. The lecture is available on FUN MOOC. I strongly recommend
to attend this online lecture if you are interested in algorithms and programming.

The BMP icons for the game have been designed by Borgar Porsteinsson and are licensed under the Creative Com-
mons Attribution 3.0 license (see https://github.com/borgar/sokoban-skins).

OO0 10/19

https://www.fun-mooc.fr/courses/course-v1:parisdiderot+56002+session03/about
http://borgar.net/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://github.com/borgar/sokoban-skins

TCS1-IN Sokoban SUPAERO 1A

specification implementation
game sokoban.h sokoban.c
loader loader.h loader.c
list linked_list_map.h Tlinked_list_map.c
queue queue_map.h queue_map.c
solver solver.h solver.c
test of loader test-loader.c
test of move test-move.c
test of replay test-replay.c
replayer replay.c
interactive player play.c
test of list test-linked-list-map.c
test of queue test-queue-map.c
test of solver test-solver.c
solver application solve.c

7 Work to do and requirements

What you have to do and the project requirements are summarized in the following points. The project is due
03/29/2023 23h59. The code retrieved from your repository at this date will be considered as the final version of
your project.

You will have to commit working code for the Sokoban player (not solver) on 03/10/2023 23h59. If not, penalty will
be applied on your final grade.

7.1 Requirements about functionalities

[R1] you must implement the following functionalities: a program to play Sokoban, a solver for Sokoban game, an
optimized version of the solver and tests as defined in section 5.

[R2] youmay implement one of the following extensions: use a hash table to store the explored configurations, elim-
inate “wrong” configurations (for instance configurations for which boxes cannot be moved), use the Dijkstra
algorithm to “guide” the solver. You may also find yourself an interesting extension. These extensions will be
taken into account in your final grade only if the basic functionalities are correctly working.

7.2 Requirements about implementation
[R3] your implementation must be written in C.
[R4] your code must compile with the -std=c99 -Wall -Werror options and at least GCC version 10.

[R5] your must use the provided Makefile (see appendix B). The rule compile-all should compile all your exe-
cutables and tests. The rule launch-tests should run all your tests. See section B for more details.

[R6] your code must work on the ISAE computers under Linux.
[R7] you must write

e a program in the play. c file that allows to play Sokoban

e aprogram in the replay. c file that shows that you can read an initial state and simulate the execution of
a plan

e a program in the solve. c file that solves a Sokoban problem
If you have not implemented one functionality, do not code the corresponding part of the program.
[R8] you must write the test files as defined in section 5.
[R9] you may add programs to test your implementation. They must be located in files beginning with app-.
[R10] your data files (initial state) should be located in the data directory and have a . in suffix.
[R11] your code must not produce errors when using the Valgrind tool.

[R12] you may reuse code YOU have implemented during the lab sessions.

©©OSO 11/19

https://en.wikipedia.org/wiki/Hash_table

TCS1-IN Sokoban SUPAERO 1A

7.3 Requirements about code conventions

[R13] your header files must be documented, possibly with the Doxygen tool (look at lab sessions and the correspond-
ing refcard on LMS). Do not document preconditions or postconditions, only functions behavior, their returns
and their parameters. You should add normal C comments in your code to explain your implementation if they
are relevant.

[R14] your C code must follow the code conventions explained during the lecture.

7.4 Requirements about your repository

[R15] you must commit your work at each successful functionality implementation. An intelligible message should
be added to the commit.

[R16] you must follow the following directories convention: your . c files must be in the src directory or in the tests
directory for tests and your . h files in the include directory. You may put the .o and executable files wherever
you want. See section C for more details.

8 Grading

Your final grade will be calculated as presented on table 4. Beware, your tests will be used to evaluate your work!

Part Details Grade Comments

Sokoban game

Sokoban structures 1
loader 1
basic movement 1
replayer 2
interactive play 1 using GUI
Sokoban solver
linked list 1 you may use the solution of M9
queue 2
solver 1
BST + solver 3
Code quality
overall quality 4 variables naming, documentation
etc.
tests quality 2
your code does not compile -5
your code produces errors with -2 maximum malus, it depends on
valgrind the number of errors
incorrect use of SVN -1 not useful commit messages etc.

Table 4: Grade details

A successful extension implementation will give you up to 4 points if the basic functionalities are correctly imple-
mented.

Notice that you may have a really good grade even if you do not implement all the functionalities: the quality of
your code is really important!

Your code will be analyzed by JPlag [2], a code plagiarism detector. DO NOT TAKE CODE FROM
ANOTHER STUDENT, EVEN IF YOU TRY TO DISGUISE IT.
If you are convinced of plagiarism, you will obtain the “R” grade for the whole course.

©©OSO 12/19

TCS1-IN Sokoban SUPAERO 1A

A

Testing functions

In this section, I will present how to write tests for your project. If you want to test a function or a property for the
project, you should

create a file whose name begins with test- in the tests directory

add a rule to build the corresponding executable in your Makefile and add the test to the global launch-tests
variable (see section B)

use the C assert macro to verify properties
define one or several functions, each one corresponding to a specific test or property
call these functions into your main function

use simple printf commands to indicate that the tests are satisfied

You will find in your tests directory a test-dummy. c file with two dummy tests about integer arithmetics that can
serve as an example. There is a corresponding rule in your Makefile to build the executable.

If your test needs external information such as a filename, use main arguments (cf. section D). Do not add the test
to the launch-tests variable of your Makefile.

B Makefile

In order to compile your applications and tests, you should use the Makefile provided in your repository. Here are
some explanations:

the doc rule generates the Doxygen documentation from your . h files. The documentation is located in the doc
directory

the clean rule removes all generated . o files and executables

the C files in the src and tests directories can be automatically compiled. For instance, if you want to produce
the .o file from src/my_file.c, just execute the following command:

make my_file.o

youshould putall the . o filenames that can be generated from your . c files as prerequisites of the check-syntax
rule. Therefore, executing make check-syntax should compile all your C source files

you should create a compilation rule for each of your applications or tests (see examples). You can use the .o
files as prerequisites as the provided rules generate them from your . c files. Do not forget to add the needed
header files as prerequisites

you should add all your executables (applications and tests) as prerequisites of the compile-all rule. There-
fore, executing make compile-all should generate all your applications and tests

you should add all your test executables in the ALL_TESTS variables. Therefore, executing make launch-tests
should execute all your tests.
Beware: do not add tests that need an argument on the command line

the OPT variable can be used to add the -03 -flto options to GCC (and thus optimize aggressively your code).
To use it, call make with OPT=1 as for instance

make compile-all OPT=1

you can put debug messages in your code using printf. In order to avoid “polluting” the execution of your
applications, you can encapsulate these messages in a preprocessor directive:

#ifdef DEBUG
printf("this is a debug message...\n");
#endif

OO0 13/19

TCS1-IN Sokoban SUPAERO 1A

When compiling your applications, all code between the #ifdef DEBUG and #endif directives will be wiped
except if you use make with DEBUG=1 as for instance

make compile-all DEBUG=1

e the svn-add-all-filesruleaddall .c, .hand .txt files that are in the expected directories. Do not hesitate
to use it!

C Repository organization
Your repository is organized as follows:

e the include directory contains your header files (. h files)
e the src directory contains your C source files, except tests
e the tests directory contains your C test files

e the doc directory contains the documentation generated by Doxygen

You should compile your files using the provided Makefile (see section B).
You must include a README. txt file at the root of your repository to give some explanations on your project, partic-
ularly how to run executables that need command-line arguments.

D Passing parameters to a program from command line
You have seen in session M0 that you can pass parameters to a Python program using the sys.argv list. There is a
similar mechanism in C when you use the following signature for main:

int main(int argc, char =*argv[])

argc represents the length of argv and argv is an array of strings containing the parameters given on the command
line and the name of the executable in position 0.

Let us take an example: let us suppose that you have such a main function in a C file compiled to a example-main
executable. Then, when executing

./example-main hello world

argc has the value 3, as there is two parameters

argv[0] is ./example-main, the name of the executable

argv[1]is hello

argv[2]isworld

You will find in your src directory an example-main. c file that prints these informations when executing the corre-
sponding executable.

E File Input/Outputin C

If you want to read or write data to a file in C, you should use the structures and functions provided by the stdio.h
header file. We will present here only simple cases when wanting to read or write formatted data from or to a text
file. You may find more information in [3] or manual pages for the functions that are described in the following.

©©OSO 14/19

TCS1-IN Sokoban SUPAERO 1A

E.1 Opening and closing files

In order to read from files (or write to files), you must first open them. stdio.h provides a type, FILE, to represent
a data stream from or/and to a particular file. Let us suppose that we want to read the content of a file data. txt. To
open the file, we will use the fopen function and get a pointer to a FILE object:

FILE *p_file = fopen("data.txt", "r+");

Some remarks:

e "data.txt" represents the path to the file, it is here a relative path (the file data.txt must be in the current
directory).

e "r"is the mode of the stream and specifies what you want to do with the file. You will mainly use the following
modes:

- "r" toread a file
— "w" to write to a file

— "r+" to read and write to a file

e if there are some errors when opening the file, the returned pointer is NULL. You should therefore test p_file.

When you have finished working with a file, you should close it. This is particularly true when writing to a file, as
the file may have been put in central memory and the modifications you have done to the file might not be commited
by the operating system (if you want to know more, you may refer to [1]). To close a file, simply call the fclose
function on your pointer:

fclose(p_file);

E.2 Reading from files
E.2.1 Reading formatted input

If your file contains only readable characters and you know that data will follow a given format, then you may use
the fscanf function. fscanf behaves like the scanf function we have seen in lab M1, but it works on files instead of
standard input.

Let us look at the fscanf signature. It needs:

e aFILE * pointer to the file you want to read from
e a format string in the same format than the printf function

e several pointer variables to store what you read

Let us suppose that we want to read int values from a file with the following format:

2 - 4

4 - 12

5 - 42

13 - 2323

Each line of the file has two int values separated by the string " - ". Letussupposethat first_valueand second_value

are int variables in which we want to store the read values, then the call to fscanf may be:

fscanf(p_file, "%d - %d", &first_value, &second_value);

The format string is "%d - %d": we expect an integer, then a space, then -, then a space, then another integer.
fscanf will return the number of input items successfully matched and assigned to the variables. Therefore, if
fscanf returns 2, then the line has been correctly read and the variables assigned.

You may wonder how you may know when the file has been completely read. The EOF special value is returned by
fscanf when it encounters the end of the file.

OO0 15/19

TCS1-IN Sokoban SUPAERO 1A

tion, p_file will then “point” after the two integers. Therefore, you should not reuse directly
p_file supposing that it points at the beginning of the file.

A When using fscanf, the pointer p_file changes! After calling for instance the previous instruc-

You will find in the src directory of your repository a simple program in the read-file-formatted. c file that tries
to print all lines of a file respecting the previous syntax (cf. listing 1). You can compile it with the following Makefile
command:

make read-file-formatted
You can execute it on the file data-toread-formatted. txt from your data directory with the following command®:

./read-file-formatted data/data-toread-formatted.txt

Try it on different inputs to verify that it works correctly, particularly when there are errors in the data file (see
data-toread-error.txt in the data directory).

Listing 1: A simple program to read formatted text files

VX
* 0file read-file-formatted.c

abrief Simple program to explain how to read
formatted data from file

@author C. Garion

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char =*xargv) {
FILE *p_file = NULL;

p_file = fopen(argv[1], "r");

if (p_file == NULL) {
fprintf(stderr, "Cannot read file %s!'\n", argv[1]);
exit(EXIT_FAILURE);

}

0]
ol o o]

int first_int

int second_int
int line_nb

int fscanf_result

. ~e

’

fscanf_result = fscanf(p_file, "%d - %d", &first_int, &second_int);

while (fscanf_result != EOF) {
if (fscanf_result != 2) {
fprintf(stderr, "Line number %d is not syntactically correct!\n",
line_nb);
ex1t(EXIT_FAILURE);

3data-toread-formatted.txt must be in the data directory in the command, but you can use relative or absolute paths to call read-file-
formatted on files that are not in the current directory.

OO0 16/19

TCS1-IN Sokoban SUPAERO 1A

printf("first value at line %d: %d\n", line_nb, first_int);
printf("second value at line %d: %d\n", line_nb, second_int);

line_nb = line_nb + 1;
fscanf_result = fscanf(p_file, "%d - %d", &first_int, &second_int);
}

fclose(p_file);
p_file = NULL;

return 0;

E.2.2 Reading text files

If you want to read simple text files*, do not use fscanf but rather the fgets function. fgets takes as input:

e achar =*string s that is used as a buffer, i.e. s will contain after the call to fgets
e an int value size that indicates the number of characters to be at most read

e a FILE * argument that represents the file to be read

Notice that fgets stops when encountering a newline or the EOF character representing the end of the file. Notice
also that you should know the maximum length of the lines of the file in order to have correct s and size arguments.
fgets will return NULL when encountering the end of the file.

Let us take an example and consider the following file:

Sing, O goddess, the anger of Achilles son of Peleus, that brought
countless ills upon the Achaeans. Many a brave soul did it send
hurrying down to Hades, and many a hero did it yield a prey to dogs
and vultures, for so were the counsels of Jove fulfilled from the day
on which the son of Atreus, king of men, and great Achilles, first
fell out with one another.

We know that the length of each line will not be more than 80 characters, therefore we could read the file and prints
each line as presented on listing 2. Compile the executable with the corresponding Makefile rule and use it on the
data/iliad.txt file in your repository.

Listing 2: A simple program to read text files

[**
* ofile read-file-text.c

* gbrief Simple program to explain how to read
* text lines from file

*

* @author C. Garion

*

*/

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *xargv) {
FILE *p_file = NULL;

p_file = fopen(argv[1]l, "r");

40r part of a file that contains only text

©©OSO 17/19

TCS1-IN Sokoban SUPAERO 1A

if (p_file == NULL) {
fprintf(stderr, "Cannot read file %s!\n", argv[1]);
exit(EXIT_FAILURE);

}

// declaration of a buffer of 81 chars: we suppose that each line
// of the file has no more than 80 chars and we add 1 char for the
// final '\0@' character

char buffer[81];

int line = 0;

// while not having encountered end of file, read lines
while (fgets(buffer, 80, p_file) != NULL) {
line++;

printf("%2d: %s", line, buffer);
}

fclose(p_file);
p_file = NULL;

return 0;

E.3 Writing to files

If you want to write formatted content to a file, you must first open the file with the "r+" or "w" modes with fopen.
You then use the fprintf function. It behaves like the printf function, but it takes as first argument a FILE *
pointer to the file you want to write to.

For instance, the program presented on listing 3 writes the factorial of the 10 first natural numbers to the file fact. txt.
The program is available in the src directory of your repository and a compilation target is provided in your Makefile.

Listing 3: A simple program to write some computations in a text file

/[**
* @file write-fact.c
*
* gbrief Simple program to explain how to write
* text into a file

*

* gauthor C. Garion

*

*/

#include <stdio.h>
#include <stdlib.h>

int main(void) {
FILE *p_file = NULL;

p_file = fopen("fact.txt", "w");
if (p_file == NULL) {

fprintf(stderr, "Cannot write to file fact.txt!\n");
exit(EXIT_FAILURE);

OO0 18/19

TCS1-IN Sokoban

SUPAERO 1A

int fact = 1;

for (int i = 0; i < 10; i++) {
fprintf(p_file, "%d! = %d\n", i, fact);

fact = fact = (i + 1);

}
fclose(p_file);
p_file = NULL;

return 0;

References

Ulrich Drepper. “What Every Programmer Should Know About Memory”. Nov. 21, 2007. urL: http://www.

akkadia.org/drepper/cpumemory.pdf.

Karlsruhe Institute of Technology. JPlag — Detecting Software Plagiarism. 2016. urL: https://jplag.ipd.kit.

edu/.

Wikibooks. C Programming, File IO — Wikibooks, The Free Textbook Project. 2015. urL: https://en.wikibooks.

org/wiki/C_Programming/File_IO.

License CC BY-NC-SA 3.0

©® ® ® 0

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported license (CC BY-NC-SA 3.0)

You are free to Share (copy, distribute and transmite) and to Remix (adapt) this work under the following conditions:

®

S
©

See http://creativecommons.org/licenses/by-nc-sa/3.0/ for more details.

Attribution — You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Noncommercial — You may not use this work for commercial purposes.

Share Alike - If you alter, transform, or build upon this work, you may distribute the resulting
work only under the same or similar license to this one.

©OSOO

19/19

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf
https://jplag.ipd.kit.edu/
https://jplag.ipd.kit.edu/
https://en.wikibooks.org/wiki/C_Programming/File_IO
https://en.wikibooks.org/wiki/C_Programming/File_IO
http://creativecommons.org/licenses/by-nc-sa/3.0/

	Objectives
	A Sokoban game in C
	A Sokoban solver
	Optimizing the solver
	Implementation details
	Game map
	The map loader
	Moving the player
	Replay
	Interactive player
	Sokoban solver
	List of already explored maps
	Queue
	Computing plan
	Freeing memory
	Testing your solver

	Implementing the BST
	Development plan
	Summary of files to produce

	Acknowledgements
	Work to do and requirements
	Requirements about functionalities
	Requirements about implementation
	Requirements about code conventions
	Requirements about your repository

	Grading
	Testing functions
	Makefile
	Repository organization
	Passing parameters to a program from command line
	File Input/Output in C
	Opening and closing files
	Reading from files
	Reading formatted input
	Reading text files

	Writing to files

