(CS4416 Database system project

Christoffer Nas, Jules Espinoux, Jeremy Nicolas, David Chuntishvili
December 1, 2024

Contents
i Hution 1
2 Platforml 1
B Modificati I | 1
4 Entity Relationship Diagram| 2
[~ View and triggers| 2
B VIeW . . . o oo o e 2
5.2 TIGEETS| . . o o o e e e e e e e e e e e 3
|6 Function and procedures| 3
6.1 total nr_of_ occupied_seats function| 3
6.2 add_song_album_link procedure| Lo oo 3

[7_Index requirement for efficient execution| 3
[71 Tndexes for the triggers|. o o i e 3

[7.3 Indexes for the procedure| L 3

1 Contribution

All work was done together and distributed equally.

2 Platform

Platform used for the project was XAMPP on Windows 11.

3 Modifications to schema

This project aimed to improve the existing database to better handle the details of artists, albums,
songs, concerts, and fans interactions. In the updated schema, each table has a unique primary key to
make sure every record is distinct and can be quickly found. This helps keep the database accurate
and organized.

Originally, the schema had direct relationships, like linking artists straight to albums, which made
it hard to show multiple artists working on the same album. To fix this, we added new tables like
7artist_album_song_link” that allow for many artists to be connected to many albums. This change
makes the database more flexible and true to how music albums are actually made.

This table also let us show that multiple artists can work on one song and that many songs can be
played at one concert. These updates help the database better reflect the teamwork and dynamics of
music production and concerts.

Updating the fan data was another key improvement. Before, fan details were directly put into the

”concert_tickets” table, leading to unnecessary duplication and mistakes. The new schema uses a
”fans” table and a ”fan_tickets_link” to connect fans with their tickets, covering situations where tick-
ets might be shared among several fans.

The ”fan_favorites” table is a new addition that allows fans to have multiple favorite artists, which
was not possible with the old schema.

Furthermore, we added a "notifications” table to support database triggers that might alert fans about
new concerts or releases from their favorite artists. This setup prepares the database for future features
that improve how fans interact with artists.

Together, these changes enhance the database’s functionality and efficiency, making sure it can handle
a wider range of real-life situations.

4 Entity Relationship Diagram

Our ERD shows how the data in our system is organized and connected. It maps out the key parts
of the data, like entities, their details, and how they relate to each other. It’s a clear plan for how the
data fits together, without getting into how it’s physically stored in the database.

concerts_tickets fan_tickets_link fans

PK | ticket id INT PK | (fan id, ticket id) PK | fan_id: INTEGER(10)

FK | concert_id: INTEGER(10) FK | fan_id: INTEGER(10) fan_name: VARCHAR(128)
purchase_date: DATE FK | ticket_id: INTEGER(10) fan_email: VARCHAR(128)
ticket_price: DOUBLE seat_zone: VARCHAR(16) age: INTEGER(10)

seat_number: VARCHAR(16)

artist_concerts_link
fan_favorites.

PK | (artist id, concert i)

I3

=

{fan_id, artist id)

concerts F

=

artist_id: INTEGER(10)

Fi

=

fan_id: INTEGER(10)

ES

PK | concert id: INTEGER(10) F

concert_id: INTEGER(10)

F

=

- artist_id: INTEGER(10)
concert_title: VARCHAR(256)

location: VARCHAR(256)

date_of_concert: DATE

concerts_songs_link artists notifications

PK | (concert id,song_id) H PK | artist id; INTEGER(10) t PK | artist id; INTEGER(10)

FK | concert it INTEGER(10) artist_name: VARCHAR(128) 1—[0‘ FK | artist_id INTEGER(10)

FK | song_id: INTEGER(10) genre: VARCHAR (64) genre: VARCHAR(64)
order_performance: TINYINT(4) debut_year: YEAR debut_year: YEAR

songs artist_album_song_link albums.

PK | song_id: INTEGER(10) PK | (artist id, album id, song_id) PK | album id: INTEGER(10)
song_title: VARCHAR(128) FK | artist_id INTEGER(10) album_title: VARCHAR(256)
length: REAL FK | album_id: INTEGER (10) B release._date: DATE
release_date: DATE FK | song_id INTEGER(10)

Figure 1: The logical ERD of the modified_conserts database.

5 View and triggers
5.1 View

The view concerts_over_one_place_summary summarizes concerts with more than one ticket sold, show-
ing the concert title, total songs performed, total song duration, and tickets sold. Data comes from
several tables: concerts, concerts_songs_link, songs, concerts_tickets, and artist_concerts_link. The

query uses JOINs to connect these tables by IDs, groups the data by concert title, and calculates
totals for songs, duration, and tickets. It filters out concerts with one or fewer tickets sold and sorts
results by tickets sold.

5.2 Triggers

The trigger fan_deletion makes sure so all the links connected to a fan is removed before a record in
the fan table is removed making sure that all references to the fan is removed on deletion. The second
trigger notify_artist_on_new_concert works in the following way, after signing a new artist to a concert
and adding it to the database, an automatic notification record is created in the database that could
be used to send out to the artist or to all of his fans.

6 Function and procedures

6.1 total nr_of occupied_seats function

This function returns the number of occupied seats for a given concert. To do this, the function takes
all the tickets associated to a concert and count the number of fan (and then seat) associated with
each ticket.

6.2 add_song_album link procedure

This procedure checks whether a given song is associated with a given album. To do this, we do
the assumption that a song stored in the database will always have an associated value in the table
artist_album_song_link. Then we can retrieve the artist associated to the song and add the link if it’s
not already in the table.

7 Index requirement for efficient execution

Introducing indexes to tables and columns where data retrieval is performed can improve query exe-
cution time since data is localized faster. However introducing indexes on tables make modification of
the database slower since all the indexes would need to be updated on modification.

7.1 Indexes for the triggers

For trigger fan_deletion, using indexes would make the execution of the trigger slower since it is
modifying the database by performing deletion of rows.

For the trigger notify_artist_on_new_concert, using indexes for table concerts and column date_of_concert
would optimize our query retrieval time since we are retrieving rows from this column in the trigger.
However introducing indexes for the table notifications would slower our deletions on the table notifi-
cations and also weaken our trigger execution time since modifications on the database is performed
on insertion of rows.

7.2 Indexes for the function

Introducing indexes for table concerts_tickets and column ticket_id would improve the function to-
tal_nr_of_occupied_seats execution time since it is retrieving data from this column.

7.3 Indexes for the procedure

To improve execution time for procedure add_song_album_link, indexes could be added to table songs
and the column release_date since the columns is only used for data retrieval. For the other columns
used the rows are also modified so there is a trade off to think about. The procedure is more
read heavy so introducing indexes for column release_date in albums, column song_id, album_id in
artist_album_song_link is probably worth it.

	Contribution
	Platform
	Modifications to schema
	Entity Relationship Diagram
	View and triggers
	View
	Triggers

	Function and procedures
	total_nr_of_occupied_seats function
	add_song_album_link procedure

	Index requirement for efficient execution
	Indexes for the triggers
	Indexes for the function
	Indexes for the procedure

